Tags | Dieser Datensatz ist Bestandteil der ÖKOBAUDAT. |
Kerninformationen des Datensatzes | |
Ort | DE |
Erläuterungen zur geographischen Repräsentativität | Der Datensatz bildet die länderspezifische Situation in Deutschland ab. Dabei werden Haupttechnologien, spezifische regionale Charakteristiken und ggf. Importstatistiken berücksichtigt. |
Referenzjahr | 2018 |
Name |
Name
; Quantitative Produkt-/Prozesseigenschaften
Edelstahl Trinkwasserrohr
|
Anwendungshinweis für Datensatz | Der Datensatz repräsentiert ein Cradle to Gate Inventar. Er kann verwendet werden, um die Lieferkette des jeweiligen Produktes in einer repräsentativen Weise zu charakterisieren. Die Kombination mit einzelnen Einheitenprozessen und diesem Produkt ermöglicht die Erstellung von anwenderspezifischen (Produkt-) LCAs. |
Technisches Anwendungsgebiet | Dieses Produkt kann im Baubereich verwendet werden. |
Gliederungsnummer | 4.2.03 |
Klassifizierung |
Klassenname
:
Hierarchieebene
|
Allgemeine Anmerkungen zum Datensatz | Dieser Datensatz wurde nach dem European Standard EN 15804 für Nachhaltiges Bauen modelliert. Ergebnisse werden in Modulen abgebildet, die den strukturierten Ausdruck von Ergebnissen über den gesamten Lebenszyklus zulassen. |
Sicherheitszuschläge | 10 |
Beschreibung | Produktsystem weitgehend vollständig abgebildet. Gute technologische, zeitliche und geographische Repräsentativität. |
Copyright | Ja |
Eigentümer des Datensatzes | |
Quantitative Referenz | |
Referenzfluss(flüsse) |
|
Zeitliche Repräsentativität | |
Datensatz gültig bis | 2022 |
Erläuterungen zur zeitlichen Repräsentativität | Jährlicher Durchschnitt |
Technologische Repräsentativität | |
Technische Beschreibung inklusive der Hintergrundsysteme | Der Datensatz wird die Herstellung einer Trinkwasserleitung aus rostfreiem Stahl (kaltgewalzt). Dabei wird das Verfahren zum Biegen des Stahlblechs, die Herstellung der Schweißnaht sowie alle notwendigen Materialien sowie der gesamte Energieaufwand berücksichtigt. Transporte von der Fabrik zur Baustelle werden nicht berücksichtigt und müssen entsprechend den Systemgrenzen einbezogen werden. Der Hauptverfahrensschritt ist hierbei die Schmelzung von Edelstahlschrott im Elektrolichtbogenofen (EAF), folglich besteht der Energieverbrauch hauptsächlich aus elektrischer Leistung/Energie. Das Hauptausgangsmaterial für die Lichtbögenöfen ist Eisenmetallschrott, der den Schrott innerhalb der Stahlwerke (z. B. Ausschuss), Ausschuss von Stahlproduktherstellern (z. B. Fahrzeugbauer) und Verbraucherschrott (z. B. Altprodukte/End-of-Life-Produkte) einschließt. Wie in dem integrierten Hütten-/Stahlwerk inklusive Hochöfen und Konvertern, wird Schlacke aus Kalk gebildet, um unerwünschte Komponenten im Stahl zu sammeln. Dementsprechend ist Kalk ein Zusatzstoff, ebenso wie Kohle (Kohlenstoff) ein Reduktionsmittel ist. Sauerstofflanzen und/oder Sauerstoffbrenner werden zur Unterstützung in frühen Stadien des Schmelzens verwendet. Für jede Metallfraktion wird der Transport im Datensatz berücksichtigt. Für die Herstellung von Karbonstahl und niedriglegierten Stahlen werden die folgenden Operationen durchgeführt: Rohmaterial-Verarbeitung und -Lagerung, Hochofenbeschickung mit/ohne Schrottvorwärmung, Schrott-Einschmelzung im Lichtbogenofen, Stahl- und Schlacken-Abstechen, Stahlbehandlung zur Qualitätsanpassung, Schlacketransporte und schließlich Strangguss. Für hochlegierte bzw. rostfreie Stähle ist die Arbeitsfolge komplexer und für Endprodukte maßgeschneidert. Zusätzlich zu den genannten Operationen für Kohlenstoffstähle werden verschiedene Pfannenbehandlungen (Sekundärmetallurgie) wie Entschwefelung, Entgasen zur Entfernung von gelösten Gasen wie Stickstoff und Wasserstoff, Entkohlung (AOD = Argon-Sauerstoff-Entkohlung oder VOD = Vakuum-Sauerstoff-Entkohlung) ausgeführt. Die folgenden Funktionen sind zwei Walzverfahren: das Warmbandwalzwerk und das Kaltwalzwerk. Im Warmwalzwerk wird die Platte oberhalb der Rekristallisationstemperatur verformt. Die in diesem Verfahren erhaltenen Eigenschaften sind z.B. Festigkeit und Oberflächenqualität. Während des Walzprozesses durchläuft das Material durch Ofen und die Walzlinie. Im Ofen wird das Metall durch Erdgas vorgewärmt. Es besteht keine Notwendigkeit für eine zusätzliche Erwärmung, wenn die heißen Platten direkt in das Walzwerk geladen werden. Das Formen läuft in verschiedenen Walzrahmen ab, bis die endgültige Form erhalten wird. Der Stahlschrott in diesem Prozess wird direkt recycelt. Im Kaltwalzwerk wird das Material unterhalb der Rekristallisationstemperatur verformt. Dadurch werden eine verbesserte Oberflächenqualität, eine verbesserte Maßgenauigkeit sowie eine höhere Festigkeit erzielt. Die verschiedenen Verfahrensschritte sind: Beizen, die Walzlinie und Wärmebehandlung. Es wurde davon ausgegangen, dass große Geräte wie Heizkessel, Klima- und Lüftungsanlagen oder Fahrstühle zu 95% einem Recycling zugeführt werden. Für Rohre oder Kabel, die oft unterputzt sind wurde eine Recyclingrate von 90% angenommen. Die Recyclingquoten beziehen sich ausschließlich auf Metalle und Kunststoffe. Für mineralische Materialien wie Mineralwolle, Beton oder Keramik wurde eine Ablagerung auf einer Inertstoffdeponie angenommen. Es wurde angenommen das der Anteil an Metallen und Kunststoffen, der nicht einem Recycling zugeführt wird (5-10%) ebenfalls auf einer Inertstoffdeponie entsorgt wird (z.B. Kabelreste oder Rohrstücke im Bauschutt). Für die Kunststoffe wird davon ausgegangen, dass aufgrund der oft langen Lebensdauer und den verbundenen Verunreinigung nicht von einer stofflichen Verwertung ausgegangen werden kann und daher die Kunststoffe einer energetischen Verwertung in Müllverbrennungsanlagen (MVA) zugeführt werden. Für die Müllverbrennung wurde ein MVA-Modell mit durchschnittlichen europäischen Emissionswerten und Energieproduktion verwendet. In Abhängigkeit des zu verbrennenden Kunststoffes wurden unterschiedliche Prozesse mit den entsprechenden Elementarzusammensetzungen verwendet. Die Datensätze wurden in Zusammenarbeit mit der Confederation of European Waste-to-Energy Plants (CEWEP) erstellt und sind auf der Homepage der European Platform on LCA [EC 2008] verfügbar. Der aus der Kunststoffverbrennung erzeugte Strom sowie die erzeugte thermische Energie wurden mit dem europäischen Strom-bzw. Wärmemix gutgeschrieben. Die Gutschriften für das Recycling von Metallen oder der energetischen Verwertung von Kunststoffen, sowie die mit der Verwertung verbundenen Emissionen und Ressourcenverbräuche (Energie für Einschmelzen, Verbrennungsemissionen, Deponie) sind in den Datensätzen enthalten. Bei Materialen aus Eisen (Stahlbleche, Rohre, Grauguss) werden bei der Herstellung der Materialien bereits unterschiedliche Mengen an Stahlschrott eingesetzt. Diese Mengen wurden der recycelten Stahlmenge vor Zuführung in die Einschmelzung abgezogen, um keine Überwertung der Gutschriften zu erzeugen. Die Gutschrift wurde dann entsprechend mit primärem Stahl durchgeführt. Gutschriften für das Recycling von seltenen Erden oder Quecksilberemissionen aus Leuchtstofflampen konnten wegen fehlenden Daten nicht berücksichtigt werden. Es wurde davon ausgegangen, dass große Geräte wie Heizkessel, Klima- und Lüftungsanlagen oder Fahrstühle zu 95% einem Recycling zugeführt werden. Für Rohre oder Kabel, die oft unterputzt sind wurde eine Recyclingrate von 90% angenommen. Die Recyclingquoten beziehen sich ausschließlich auf Metalle und Kunststoffe. Für mineralische Materialien wie Mineralwolle, Beton oder Keramik wurde eine Ablagerung auf einer Inertstoffdeponie angenommen. Es wurde angenommen das der Anteil an Metallen und Kunststoffen, der nicht einem Recycling zugeführt wird (5-10%) ebenfalls auf einer Inertstoffdeponie entsorgt wird (z. B. Kabelreste oder Rohrstücke im Bauschutt). Für die Kunststoffe wird davon ausgegangen, dass aufgrund der oft langen Lebensdauer und den verbundenen Verunreinigung nicht von einer stofflichen Verwertung ausgegangen werden kann und daher die Kunststoffe einer energetischen Verwertung in Müllverbrennungsanlagen (MVA) zugeführt werden. Für die Müllverbrennung wurde ein MVA-Modell mit durchschnittlichen europäischen Emissionswerten und Energieproduktion verwendet. In Abhängigkeit des zu verbrennenden Kunststoffes wurden unterschiedliche Prozesse mit den entsprechenden Elementarzusammensetzungen verwendet. Die Datensätze wurden in Zusammenarbeit mit der Confederation of European Waste-to-Energy Plants (CEWEP) erstellt und sind auf der Homepage der European Platform on LCA [EC 2008] verfügbar. Der aus der Kunststoffverbrennung erzeugte Strom sowie die erzeugte thermische Energie wurden mit dem europäischen Strom-bzw. Wärmemix gutgeschrieben. Die Gutschriften für das Recycling von Metallen oder der energetischen Verwertung von Kunststoffen, sowie die mit der Verwertung verbundenen Emissionen und Ressourcenverbräuche (Energie für Einschmelzen, Verbrennungsemissionen, Deponie) sind in den Datensätzen enthalten. Bei Materialen aus Eisen (Stahlbleche, Rohre, Grauguss) werden bei der Herstellung der Materialien bereits unterschiedliche Mengen an Stahlschrott eingesetzt. Diese Mengen wurden der recycelten Stahlmenge vor Zuführung in die Einschmelzung abgezogen, um keine Überwertung der Gutschriften zu erzeugen. Die Gutschrift wurde dann entsprechend mit primärem Stahl durchgeführt. Gutschriften für das Recycling von seltenen Erden oder Quecksilberemissionen aus Leuchtstofflampen konnten wegen fehlenden Daten nicht berücksichtigt werden. Hintergrundsystem: Strom: Die Stromerzeugung wird entsprechend der länderspezifischen Randbedingungen modelliert. Die landesspezifische Analyse beinhaltet: 1.: Spezifische Kraftwerke der verschiedenen fossilen Energieträger und der Einsatz erneuerbarer Energien sind entsprechend der länderspezifischen Energieträgermixe modelliert. Die Analyse bezieht Stromimporte aus den Nachbarländern, Transmissions-und Verteilungsverluste und den Eigenverbrauch im Kraftwerk und bei der Verteilung bzw. Speicherung, z. B. durch Pumpspeicherwerke, ein. 2.: Die landes-/regionalspezifischen Technologiestandards sowie die Erzeugung in Elektrizitätskraftwerken und/oder in speziellen Kraftwerken mit Kraft-Wärme-Kopplung (KWK) sind berücksichtigt. 3.: Die länderspezifische Energieträgerbereitstellung (mit Anteil der Importe und/oder Eigenversorgung) einschließlich der Energieträger-Eigenschaften (z. B. Elementar- und Energiegehalte) werden berücksichtigt. 4.: Die Förderung, Produktion, Verarbeitung und Transportprozesse werden entsprechend der Situation im jeweiligen Stromerzeugerland modelliert. Die unterschiedlichen Produktions- und Verarbeitungsverfahren (Emissionen und Wirkungsgrade) in den verschiedenen Energieerzeugerländern werden einbezogen, z. B. Rohöl-Veredelungsverfahren oder Abfackel-Raten an den Ölplattformen. Thermische Energie, Prozessdampf: Die Erzeugung von Dampf und thermischer Energie in Heizkraftwerken wird entsprechend der landesspezifischen Situation (Emissionsgrenzwerte, Energieträgerbasis) modelliert. Der Wirkungsgrad für die thermische Energieerzeugung beträgt per Definition 100% des Energieträgereinsatzes. Für Prozessdampf liegt der Wirkungsgrad im Bereich von 85-95%. Die zur Heizenergie-Erzeugung verwendeten Energieträger werden entsprechend der nationalen Situation modelliert (siehe Kapitel Strom oben). Transporte: Alle relevanten und bekannten Transportprozesse in Form von See- und Binnenschiffsverkehr sowie Bahn-, Lkw- und der Leitungstransport sind enthalten. Energieträger: Die Energieträger werden entsprechend der spezifischen Versorgungslage modelliert (siehe Kapitel Strom oben). Raffinerieprodukte: Diesel, Benzin, technische Gase, Heizöl, Schmierstoffe und Rückstände, wie Bitumen, werden mit einem parametrierten länderspezifische Raffineriemodell modelliert. Das Raffinerie-Modell bezieht die länderspezifischen Veredelungsverfahren (z. B. Emissionspegel, interner Energieverbrauch etc.) und das länderspezifische Produktspektrum ein, das sich je nach Land stark unterscheiden kann. Die Rohöl-Förderung wird gemäß der länderspezifischen Situation mit den jeweiligen Energieträger-Eigenschaften modelliert. " |
Piktogramm |
Subtyp | generic dataset | ||||||||
Datenquellen, Behandlung und Repräsentativität | |||||||||
Für diesen Datensatz verwendete Datenquelle(n) | |||||||||
Vollständigkeit | |||||||||
Validierung | |||||||||
| |||||||||
Konformitätsdeklarationen |
Konformität |
Konformitätsystemname
|
Genehmigung der insgesamten Einhaltung
Fully compliant |
Nomenclature compliance
|
Methodological compliance
|
Bewertung der Einhaltung
|
Dokumentation der Einhaltung
|
Einhaltung der Qualitätsvorgaben
|
Dateneingabe | |
Zeitstempel (zuletzt gespeichert) | 2019-12-04T10:06:02+01:00 |
Datensatzformat(e) | |
Dateneingabe | |
Veröffentlichung und Eigentum | |
UUID | 4d37d8f4-13db-418d-820d-5cf08f050eff |
Datensatzversion | 20.19.120 |
Eigentümer des Datensatzes | |
Copyright | Ja |
Parameter zur Beschreibung des Ressourceneinsatzes und sonstige Umweltinformationen