Close Go back Collapse all sections
Process Data set: Hebel autoclaved aerated concrete, reinforced (en) en de

Key Data Set Information
Location DE
Reference year 2023
Name
Hebel autoclaved aerated concrete, reinforced
Use advice for data set Scope: The LCA is based on the consumption data from three manufacturing plants of Xella Baustoffe GmbH and the database for 2021. System boundary: Type of EPD: cradle to factory gate, with options Description of the life cycle phases: Product stage (A1-A3) Raw material supply and truck transport of raw materials to the plant Production expenses, in particular the provision and use of energy sources and auxiliary materials, as well as packaging materials Treatment of production waste and waste water Allocation of all environmental burdens by mass between associated co-products (e.g. broken material for use and marketing as cat litter or oil binder) and main product. Construction process stage (A4-A5) Module A4: transport by truck to the construction site (100 km). Transport distance can be adjusted at building level if necessary (e.g. for 200 km actual transport distance: multiplication of the LCA values by a factor of 2). Module A5: Thermal packaging treatment and ensuing credits in module D. Offcuts were not taken into account, as they strongly depend on the building context. Offcuts can be estimated approximately via the declared values for the product stage (e.g. 5% offcuts: multiplication of the LCA values by a factor of 0.05). Installation of the actual products is usually done using lifting equipment. The energy required for this is not known. As an alternative, the same amount of energy is used for assembly as for disassembly (C1). Mortar is not considered in this EPD. Use stage (B1) Recarbonation of reactive product components (e.g. CaO). A recarbonation rate of 95% is assumed (Walther, 2022). End-of-life stage (C1-C4) Module C1: Mechanical demolition (excavator). Module C2: transport by truck to waste processing (50 km). Transport distance can be adjusted at building level if necessary (e.g. for 100 km actual transport distance: multiplication of the LCA values by a factor of 2). Module C3: (material recycling scenario): waste processing and material recycling as fill material (incl. credits for substitution of gravel in Module D). Module C4: (landfilling scenario): average emissions from landfilling. Benefits and loads beyond the system boundaries (D) Credits from saved expenses through substitution of gravel as fill material (from Module C3) and credits for energy substitution from packaging treatment.
Technical purpose of product or process Reinforced components for roofs, ceilings and supporting and non-supporting walls. Direct contact with water is avoided for technical structure reasons.
Classification number 1.3.03
Classification
Class name : Hierarchy level
  • OEKOBAU.DAT: 1.3.03 Mineral building products / Bricks, blocks and elements / Aerated concrete
  • IBUCategories: null / null / null
General comment on data set The products under review are reinforced elements of various formats made of autoclaved aerated concrete (AAC). AAC is classified as a porous, steam-cured, lightweight concrete.
Copyright Yes
Owner of data set
Quantitative reference
Reference flow(s)
Material properties of the reference flow
    • gross density: 528.0 kg/m^3
    • conversion factor to 1kg: 0.0018 -
Time representativeness
Data set valid until 2028
Technological representativeness
Technology description including background system Der gemahlene Quarzsand wird mit Kalk, Zement und zerkleinertem Porenbeton-Recyclingmaterial, unter Zugabe von Wasser und Aluminiumpulver oder -paste, in einem Mischer zu einer wässrigen Suspension gemischt und in Gießformen gegossen. Das Wasser löscht unter Wärmeentwicklung den Kalk. Das Aluminium reagiert im alkalischen Milieu. Dabei bildet sich gasförmiger Wasserstoff, der die Poren in der Masse erzeugt und ohne Rückstände entweicht. Die Poren besitzen meist einen Durchmesser von 0,5 – 1,5 mm und sind ausschließlich mit Luft gefüllt. Nach dem ersten Abbinden entstehen halbfeste Rohblöcke, aus denen maschinell und mit hoher Genauigkeit die Porenbetonbauteile geschnitten werden. Die Ausbildung der endgültigen Porenbetoneigenschaften erfolgt während der anschließenden Dampfhärtung über 5 – 12 Stunden bei etwa 190 °C und einem Druck von ca. 12 bar in Dampfdruckkesseln, den sog. Autoklaven. Hier bilden sich aus den eingesetzten Stoffen Calcium-Silikathydrate, die dem in der Natur vorkommenden Mineral Tobermorit entsprechen. Die Reaktion des Materials ist mit der Entnahme aus dem Autoklav abgeschlossen. Der Dampf wird nach Abschluss des Härtungsprozesses für weitere Autoklavzyklen verwandt. Das anfallende Kondensat wird als Prozesswasser genutzt. Auf diese Weise wird Energie eingespart und eine Belastung der Umwelt mit heißem Abdampf und Abwasser vermieden. Porenbeton-Bausteine werden anschließend auf Holzpaletten gestapelt und in recycelbare Schrumpffolie aus Polyethylen (PE) eingeschweißt. Technical data: See the Declaration of Performance for the respective product. The following table includes general data. Declared unit: The declared unit is 1 m reinforced autoclaved aerated concrete with a gross density of 528 kg/m and 20 kg reinforcement. The average gross density was determined by averaging the data from the factory production control (FPC), the amount of reinforcement from the material used in the reference year.

Indicators of life cycle

IndicatorDirectionUnit Production
A1-A3
Transport
A4
Installation
A5
Use
B1
De-construction
C1
Transport
C2
Waste processing
C3
Disposal
C4
Recycling Potential
D
Input
  • 184
  • 2.558
  • 35.02
  • 0
  • 0.2614
  • 1.273
  • 2.439
  • 14.82
  • -5.992
Input
  • 34.58
  • 0
  • -34.58
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Input
  • 218.6
  • 2.558
  • 0.4402
  • 0
  • 0.2614
  • 1.273
  • 2.439
  • 14.82
  • -5.992
Input
  • 1878
  • 44.61
  • 5.481
  • 0
  • 4.559
  • 22.21
  • 27.6
  • 1.1E+2
  • -45.09
Input
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Input
  • 1878
  • 44.61
  • 5.481
  • 0
  • 4.559
  • 22.21
  • 27.6
  • 1.1E+2
  • -45.09
Input
  • 39.07
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 531.7
Input
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Input
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Input
  • 0.2436
  • 0.002929
  • 0.01061
  • 0
  • 0.0002994
  • 0.001458
  • 0.007158
  • 0.02715
  • -0.008272
Output
  • 3.685E-7
  • 2.35E-9
  • 4.066E-10
  • 0
  • 2.402E-10
  • 1.17E-9
  • 1.603E-9
  • 1.168E-8
  • -6.843E-9
Output
  • 2.353
  • 0.006998
  • 0.03116
  • 0
  • 0.0007153
  • 0.003484
  • 0.007949
  • 548.7
  • -22.16
Output
  • 0.04972
  • 0.00008092
  • 0.00005941
  • 0
  • 0.00000827
  • 0.00004029
  • 0.0002032
  • 0.001155
  • -0.003641
Output
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Output
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 548.2
  • 0
  • 0
Output
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Output
  • 0
  • 0
  • 6.13
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Output
  • 0
  • 0
  • 11.01
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0

IndicatorUnit Production
A1-A3
Transport
A4
Installation
A5
Use
B1
De-construction
C1
Transport
C2
Waste processing
C3
Disposal
C4
Recycling Potential
D
  • 248.6
  • 3.361
  • 4.62
  • -90.29
  • 0.3581
  • 1.673
  • 1.475
  • 8.315
  • -2.62
  • -3.193
  • 0.03555
  • 4.2
  • 0
  • 0.0005286
  • 0.0177
  • 0.003757
  • 0.0003293
  • 0.0186
  • 251.7
  • 3.298
  • 0.4174
  • -90.29
  • 0.3547
  • 1.642
  • 1.463
  • 8.29
  • -2.634
  • 0.1007
  • 0.02727
  • 0.002828
  • 0
  • 0.002788
  • 0.01358
  • 0.008014
  • 0.02436
  • -0.004912
  • 6.115E-13
  • 6.588E-16
  • 6.231E-16
  • 0
  • 6.733E-17
  • 3.28E-16
  • 6.524E-15
  • 3.222E-14
  • -1.942E-14
  • 0.2148
  • 0.003075
  • 0.002783
  • 0
  • 0.002246
  • 0.001531
  • 0.01961
  • 0.04645
  • -0.01043
  • 0.207
  • 0.00354
  • 0.002313
  • 0
  • 0.001711
  • 0.001762
  • 0.01364
  • 0.05905
  • -0.009455
  • 0.7927
  • 0.01341
  • 0.01174
  • 0
  • 0.008869
  • 0.006678
  • 0.07413
  • 0.1684
  • -0.03982
  • 0.0001173
  • 0.000009913
  • 0.000001089
  • 0
  • 0.000001013
  • 0.000004936
  • 0.000003332
  • 0.00001392
  • -0.000005096
  • 0.07231
  • 0.00113
  • 0.0009994
  • 0
  • 0.0008014
  • 0.0005625
  • 0.006745
  • 0.01533
  • -0.003626
  • 4.752
  • 0.03097
  • 0.4417
  • 0
  • 0.003165
  • 0.01542
  • 0.2457
  • 0.8898
  • -0.1641
  • 0.00001487
  • 2.958E-7
  • 3.87E-8
  • 0
  • 3.023E-8
  • 1.473E-7
  • 0.000001612
  • 7.824E-7
  • -3.289E-7
  • 1878
  • 44.45
  • 5.464
  • 0
  • 4.543
  • 22.13
  • 27.6
  • 1.1E+2
  • -45.07

IndicatorUnit Production
A1-A3
Transport
A4
Installation
A5
Use
B1
De-construction
C1
Transport
C2
Waste processing
C3
Disposal
C4
Recycling Potential
D
1This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.
2The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experiences with the indicator.
Comparative toxic unit for humans (carcinogenic) (HTP-c) 2
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
Comparative toxic unit for humans (noncarcinogenic) (HTP-nc) 2
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
Incidence of disease due to PM emissions (PM) 2
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
Human exposure efficiency relative to U235 (IR) 1
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
Comparative toxic unit for ecosystems (ETP-fw) 2
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
Soil quality index (SQP) 2
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND
  • ND