Umweltproduktdeklaration (EPD)

Deklarationsnummer: EPD-APG-21.0

AGC Glass Europe

Brandschutzglas

PYROBEL und PYROBELite

Grundlagen:

DIN EN ISO 14025 EN15804 Firmen-EPD Environmental

Product Declaration

Veröffentlichungsdatum: 09.12.2015 Nächste Revision: 09.12.2020

www.ift-rosenheim.de/ erstellte-epds

Umweltproduktdeklaration (EPD)

Deklarationsnummer: EPD-APG-21.0

Programmbetreiber	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim								
Ökobilanzierer	AGC Glass Europe Avenue Jean Monnet 4 BE 1348 Louvain-la-Neuv	•							
Deklarationsinhaber	AGC Glass Europe Avenue Jean Monnet 4 BE 1348 Louvain-la-Neuv	et							
Deklarationsnummer	EPD-APG-21.0								
Bezeichnung des deklarierten Produktes	PYROBEL und PYROBEL	_ite							
Anwendungsbereich	Im Innenbereich oder Auß	senbereich in Verbindung mit	einer Isolierverglasung.						
Grundlage	15804:2012+A1:2013 er Erstellung von Typ III U	f Basis der EN ISO 1- stellt. Zusätzlich gilt der mweltproduktdeklarationen. I chglas im Bauwesen" – PCR-	allgemeine Leitfaden zur Die Deklaration beruht auf						
0::4:-4-:4	Veröffentlichungsdatum: 09.12.2015	Letzte Überarbeitung: 07.08.2019	Nächste Revision: 09.12.2020						
Gültigkeit		n-Umweltproduktdeklaration nd hat eine Gültigkeit v emäß DIN EN 15804.							
Rahmen der Ökobilanz	Die Ökobilanz wurde gemäß DIN EN ISO 14040 und DIN EN ISO 14044 erstel Als Datenbasis wurden die erhobenen Daten des Produktionswerks der AG Glass Europe herangezogen sowie generische Daten der Datenbank "GaBi und "Ecoinvent Integrated database". Die Ökobilanz wurde über den gesamte Lebenszyklus "von der Wiege bis zur Bahre" (cradle to gate mit optionen) unte zusätzlicher Berücksichtigung sämtlicher Vorketten wie bspw. Rohstoffgewinnur berechnet.								
Hinweise	Es gelten die "Bedingungen und Hinweise zur Verwendung von if Prüfdokumentationen". Der Deklarationsinhaber haftet vollumfänglich für die zugrundeliegender Angaben und Nachweise.								
Mr. Khimmy		Patrid Worts							
Prof. Ulrich Sieberath Institutsleiter		Patrick Wortner, MBA and E Unabhängiger, externer Prü	• • • • • • • • • • • • • • • • • • • •						

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

1 Allgemeine Produktinformationen

Produktdefiniton

Die EPD gehört zur Produktgruppe Glas und ist gültig für:

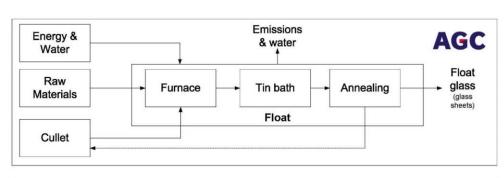
PYROBEL und PYROBELite der Firma AGC Glass Europe

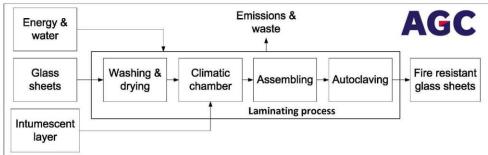
Die Berechnung der Ökobilanz wurde unter der Berücksichtigung folgender deklarierter Einheit durchgeführt:

1 m² Fläche

Diese funktionelle Einheit wird folgendermaßen deklariert:

Es wurde die Gesamtheit an produzierten PYROBEL und PYROBELite im Jahr 2014 auf die deklarierte Einheit skaliert, da keine typische funktionelle Einheit aufgrund der hohen Variantenvielfalt vorhanden ist.


Produktbeschreibung


Bei den betrachteten Produkten handelt es sich um einen Verbund aus Sicherheitsgläsern mit einer dazwischenliegenden Brandschutzschichten.

PYROBEL und PYROBELite ist ein Verbund aus mehreren Glasscheibenmit dazwischenliegenden Brandschutzschichten. Diese Zwischenschichten werden im Brandfall aktiviert und bilden eine hochwirksame Dämmung, so dass neben der Wahrung des Raumabschlusses auch ein Durchgang der Wärmestrahlung und damit die Aufheizung bzw. die Entzündung von brennbaren Stoffen auf der ffeuerabgewandten Seite verhindert wird.

Für eine detaillierte Produktbeschreibung sind die Herstellerangaben unter www.agc-glass.eu oder die Produktbeschreibungen des jeweiligen Angebotes zu beachten.

Produktherstellung

Deklarationsnummer: EPD-APG-21.0

Veröffentlichungsdatum: 09.12.2015

Seite 4

Produktgruppe: Glas

Anwendung Im Innenbereich oder Außenbereich in Verbindung mit einer Wärmeschutzverglasung.

Managementsysteme Folgende Managementsysteme sind vorhanden:

- Qualitätsmanagementsystem nach DIN EN ISO 9001:2008
- Umweltmanagementsystem nach DIN EN ISO 14001:2014

zusätzliche Informationen

Die detaillierten bauphysikalischen Eigenschaften sind der CE-Kennzeichnung und den Begleitdokumenten zu entnehmen.

PYROBEL und PYROBELite erfüllen folgende technische Eigenschaften nach

- Klassifizierung nach EN 13501-2; EW und/oder El 15, 30, 45, 60, 90 oder 120 min;
- Lichttransmission nach EN 410: max 89 %;
- Lichtreflexion nach EN 410: 6 8 %;

Desweiteren erfüllen die Produkte die Anforderungen an EN 14449:2005. Die Produkte und dazugehörigen Anwendungsbereiche sind auf www.yourglass.com veröffentlicht

2 Verwendete Materialien

Grundstoffe Verwendete Grundstoffe sind der Ökobilanz (siehe Kapitel 7) zu entnehmen.

Deklarationspflichtige Stoffe

Es sind keine Stoffe gemäß REACH Kandidatenliste enthalten (Deklaration vom 24. Februar 2015).

Alle relevanten Sicherheitsdatenblätter können bei AGC Glass Europeoder über www.yourglass.com bezogen werden.

3 Baustadium

Verarbeitungsempfehlungen Einbau Es sind die Hinweise zur Verwendung zu beachten. Siehe hierzu www.yourglass.com

4 Nutzungsstadium

Emissionen an die Umwelt

Es sind keine Emissionen in die Innenraumluft, Wasser und Boden bekannt. Es entstehen ggf. VOC-Emissionen. Die Gläser PYROBEL und PYROBELite erreichen laut Deklaration des Herstellers die Klasse A+ des französischen Bewertungsschemas "Emissions dans l'air interieur". Nähere Infos zu VOC-Emissionen der Produkte sind unter www.yourglass.com zu finden.

Für Wartung und Instandsetzung werden im Durchschnitt 15 I Schmutzwasser für eine berechnete Nutzungsdauer von 30 Jahren berechnet.

Referenz-Nutzungsdauer (RSL)

Die RSL-Informationen stammen vom Hersteller. Die RSL muss sich auf die deklarierte technische und funktionale Qualität des Produkts im Gebäude beziehen. Sie muss in Übereinstimmung mit jeglichen spezifischen Regeln, die in den Europäischen Produktnormen bestehen, etabliert werden und muss die

Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

Seite 5

ISO 15686-1, -2, -7 und -8 berücksichtigen. Wenn Angaben zur Ableitung von RSL aus Europäischen Produktnormen vorliegen, dann haben solche Angaben Priorität. Kann die Nutzungsdauer nicht als RSL nach ISO 15686 ermittelt werden, kann auf die BBSR-Tabelle "Nutzungsdauern von Bauteilen zur Lebenszyklusanalyse nach BNB" zurückgegriffen werden. Weitere Informationen und Erläuterungen sind unter www.nachhaltigesbauen.de zu beziehen.

Für diese EPD gilt:

Für eine "von der Wiege bis zum Werktor - mit Optionen"-EPD ist die Angabe einer Referenz-Nutzungsdauer (RSL) nur dann möglich, wenn alle Module A1-A3 und B1-B5 angegeben werden;

Die Nutzungsdauer der PYROBEL und PYROBELite der AGC Glass Europe wird mit 30 Jahren laut Hersteller optional spezifiziert.

Für diese EPD wird keine Angabe der RSL benötigt. In der Ökobilanz wurde dennoch eine Angabe der Nutzungsdauer für die französchische Deklaration "Fiches de Déclarations Environnementales et Sanitaires" (FDES) gemacht.

Die RSL hängt von den Eigenschaften des Produkts und den Referenz-Nutzungsbedingungen ab. Es gelten folgende Eigenschaften:

- Deklarierte Produkteigenschaften: siehe Kapitel 1 Allgemeine Produktinformationen - Produktdefinition
- Anwendungsparameter für die Konstruktion: siehe Kapitel 3 Baustadium - Verarbeitungsempfehlungen und Kapitel 1 Allgemeine Produktinformationen - zusätzliche Informationen
- Angenommene Ausführungsqualität: siehe Kapitel 3 Baustadium -Verarbeitungsempfehlungen und Kapitel 1 Allgemeine Produktinformationen - Anwendung
- Außenbedingungen: siehe Kapitel 1 Allgemeine Produktinformationen
 Produktdefinition
- Innenbedingungen: Es sind keine Einflüsse bekannt, die sich negativ auf die Referenz-Nutzungsdauer auswirken
- Nutzungsbedingungen: siehe Kapitel 9 Anhang. Die Referenz-Nutzungsdauer gilt nur für die angegebenen Nutzungsbedingungen
- Instandhaltung: siehe Kapitel 9 Anhang B2 Instandhaltung

Die Nutzungsdauer gilt ausschließlich für die Eigenschaften, die in dieser EPD ausgewiesen sind bzw. die entsprechenden Verweise hierzu.

Die RSL spiegelt nicht die tatsächliche Lebenszeit wieder, die in der Regel durch die Nutzungsdauer und die Sanierung eines Gebäudes bestimmt wird. Sie stellt Aussage zu Gebrauchsdauer, Gewährleistung zu Leistungseigenschaften oder Garantiezusage dar.

5 Nachnutzungsstadium

Nachnutzungsmöglichkeiten

Glas und sortierte Verglasungen recycelbar. Es könnten heute etwa 5 - 20 % der ausgebauten Verglasungen demontiert, sortenrein getrennt und gesammelt werden und über Recycling zur Glasherstellung rückgeführt werden (Post-Consumer-Scherben); etwa 80 – 95 % wird als Bauschutt der Deponie zugeführt. Dennoch wurde das End-of-Life konservativ moduliert (aufgrund Mangel an genauen Daten). Es wurde angenommen, dass 100 %

Veröffentlichungsdatum: 09.12.2015

Seite 6

Produktgruppe: Glas

der Glasabfälle der Deponie / Bauschutt zugeführt werden.

Entsorgungswege

Die durchschnittlichen Entsorgungswege wurden in der Bilanz berücksichtigt.

Weitere Lebenszyklusszenarien sind im Anhang detailliert beschrieben.

6 Ökobilanz

Basis von Umweltproduktdeklarationen sind Ökobilanzen, in denen über Stoffund Energieflüsse die Umweltwirkungen berechnet und anschließend dargestellt werden.

Als Basis dafür wurde für PYROBEL und PYROBELite eine Ökobilanz erstellt. Diese entspricht den Anforderungen gemäß der EN 15804 und den internationalen Normen DIN EN ISO 14040, DIN EN ISO 14044, ISO 21930 und EN ISO 14025.

Die Ökobilanz ist repräsentativ für die in der Deklaration dargestellten Produkte und den angegebenen Bezugsraum.

6.1 Festlegung des Ziels und Untersuchungsrahmens

Ziel

Die Ökobilanz dient zur Darstellung der Umweltwirkungen für PYROBEL und PYROBELite. Die Umweltwirkungen werden gemäß EN 15804 als Basisinformation für diese Umweltproduktdeklaration über den Lebenszyklus "Wiege zum Werktor mit Optionen" dargestellt. Darüber hinaus werden keine weiteren Umweltwirkungen angegeben.

Datenqualität und Verfügbarkeit sowie geographische und zeitliche Systemgrenzen

Die spezifischen Daten stammen ausschließlich aus dem Geschäftsjahr 2014. Diese wurden in den Werken in Seneffe und Olovi durch eine vor Ort Aufnahme erfasst und stammen teilweise aus Geschäftsbüchern und teilweise aus direkt abgelesenen Messwerten. Die Daten wurden durch das ift Rosenheim auf Validität geprüft.

Generische Daten stammen aus der Professional Datenbank und der Software "GaBi 6" und der "Ecoinvent Integrated database". Beide Datenbanken wurden zuletzt 2015 aktualisiert. Ältere Daten stammen ebenfalls aus dieser Datenbank und sind nicht älter als vier Jahre. Es wurden keine weiteren generischen Daten für die Berechnung verwendet.

Datenlücken wurden entweder durch vergleichbare Daten oder konservative Annahmen ersetzt oder unter Beachtung der 1%-Regel abgeschnitten.

Zur Modellierung des Lebenszyklus wurde das Software-System zur ganzheitlichen Bilanzierung "GaBi 6" eingesetzt.

Untersuchungsrahmen / Systemgrenzen

Die Systemgrenzen beziehen sich auf die Beschaffung von Rohstoffen und Zukaufteilen, die Herstellung, die Nutzung und die Nachnutzung der PYROBEL und PYROBELite (cradle to gate mit Optionen).

Es wurden keine zusätzlichen Daten von Vorlieferanten bzw. anderer Standorte berücksichtigt.

Deklarationsnummer: EPD-APG-21.0

Veröffentlichungsdatum: 09.12.2015

Seite 7

Abschneidekriterien

Es wurden alle Daten aus der Betriebsdatenerhebung, d.h. alle verwendeten Eingangs- und Ausgangsstoffe, die eingesetzte thermische Energie sowie der Stromverbrauch berücksichtigt.

Die Grenzen beschränken sich jedoch auf die produktionsrelevanten Daten. Gebäude- bzw. Anlagenteile, die nicht für die Produktherstellung relevant sind, wurden ausgeschlossen.

Die Transportwege der Vorprodukte wurden mit durchschnittlich 150 km (LKW) berücksichtigt.

Die Kriterien für eine Nichtbetrachtung von Inputs und Outputs nach EN 15804 werden eingehalten. Es kann davon ausgegangen werden, dass die vernachlässigten Prozesse pro Lebenszyklusstadium 1 Prozent der Masse bzw. der Primärenerige nicht übersteigt. In der Summe werden für die vernachlässigten Prozesse 5 Prozent des Energie- und Masseeinsatzes eingehalten. Für die Berechnung der Ökobilanz wurden auch Stoff- und Energieströme kleiner 1 Prozent berücksichtigt.

6.2 Sachbilanz

Ziel

In der Folge werden sämtliche Stoff- und Energieströme beschrieben. Die erfassten Prozesse werden als Input- und Outputgrößen dargestellt und beziehen sich auf die deklarierte bzw. funktionelle Einheit.

Der Modellierung der Ökobilanz zu Grunde liegenden Einheitsprozesse sind in transparenter Weise dokumentiert.

Lebenszyklusphasen

Der gesamte Lebenszyklus der PYROBEL und PYROBELite ist im Anhang dargestellt. Es werden die Herstellung "A1 – A3", die Errichtung "A4 – A5", die Nutzung "B1 – B7" und die Entsorgung "C1 – C4" berücksichtigt.

Gutschriften

Es werden keine Gutschriften gemäß EN 15804 angegeben.

Allokationen von Co-Produkten

Bei der Herstellung von PYROBEL und PYROBELite treten keine Allokationen auf.

Allokationen für Wiederverwertung, Recycling und Rückgewinnung Glas und sortierte Verglasungen recycelbar. Es könnten heute etwa 5 - 20 % der ausgebauten Verglasungen demontiert, sortenrein getrennt und gesammelt werden und über Recycling zur Glasherstellung rückgeführt werden (Post-Consumer-Scherben); etwa 80 – 95 % wird als Bauschutt der Deponie zugeführt. Dennoch wurde das End-of-Life konservativ moduliert (aufgrund Mangel an genauen Daten). Es wurde angenommen, dass 100 % der Glasabfälle der Deponie / Bauschutt zugeführt werden.

Die Systemgrenzen der PYROBEL und PYROBELite wurden nach der Entsorgung gezogen, wo das Ende ihrer Abfalleigenschaften erreicht wurde.

Allokationen über Lebenszyklusgrenzen

Es wurde keine Recyclingmaterialien in der Herstellung angesetzt.

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

Sekundärstoffe

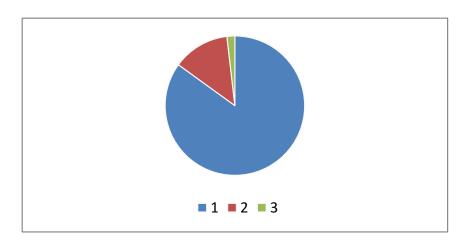
Der Einsatz von Sekundärstoffen im Modul A3 wurde bei der Firma AGC Glass Europe betrachtet. Sekundärmaterial wird nicht eingesetzt.

Inputs

Folgende fertigungsrelevanten Inputs wurden in der Ökobilanz erfasst:

Energie

Für den Strommix wurde der "Strommix EU-27" angenommen. Für Gas wurde "Erdgas EU-27" angenommen.


Prozesswärme wird zum Teil für die Hallenbeheizung genutzt. Diese lässt sich jedoch nicht quantifizieren und wurde dem Produkt als "worst case" angerechnet.

Wasser

In den einzelnen Prozessschritten zur Herstellung der PYROBEL und PYROBELite ergibt sich ein Wasserverbrauch von 76,73 I pro m² Element. Der in Kapitel 7.3 ausgewiesene Süßwasserverbrauch entsteht unter anderem durch die Prozesskette der Vorprodukte.

Rohmaterial/Vorprodukte

In der nachfolgenden Grafik wird der Einsatz der Rohmaterial/Vorprodukte prozentual dargestellt.

Nr.	Material	Masse in %
1	Flachglas	85
2	Aufschäumende Schicht	13
3	Laminierungsschicht	2

Hilfs- und Betriebsstoffe

Für die Herstellung von PYROBEL und PYROBELite fallen Hilfs- und Betriebsstoffe an. Diese werden in der Ökobilanz nicht gesondert ausgewiesen.

Outputs

Folgende fertigungsrelevante Outputs wurden pro m² PYROBEL und PYROBELite in der Ökobilanz erfasst:

Deklarationsnummer: EPD-APG-21.0

Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

Seite 9

Abfall

Sekundärrohstoffe wurden bei den Gutschriften berücksichtigt, bzw. nicht betrachtet

Siehe Kapitel 6.3 Wirkungsabschätzung.

Abwasser

Bei der Herstellung der PYROBEL und PYROBELite fallen 72,7 I Abwasser pro m² an.

6.3 Wirkungsabschätzung

Ziel

Die Wirkungsabschätzung wurde in Bezug auf die Inputs und Outputs durchgeführt. Dabei werden folgende Wirkungskategorien betrachtet:

Wirkungskategorien

Die Modelle für die Wirkungsabschätzung wurden angewendet, wie in EN 15804-A1 beschrieben.

Folgende Wirkungskategorien werden in der EPD dargesetellt:

- Verknappung von abiotischen Ressourcen (fossile Energieträger);
- Verknappung von abiotischen Ressourcen (Stoffe);
- Versauerung von Boden und Wasser;
- Ozonabbau;
- globale Erwärmung;
- Eutrophierung;
- photochemische Ozonbildung.

Abfälle

Die Auswertung des Abfallaufkommens zur Herstellung von einem m² PYROBEL und PYROBELite wird getrennt für die Fraktionen hausmüllähnliche Gewerbeabfälle, Sonderabfälle und radioaktive Abfälle dargestellt. Da die Abfallbehandlung innerhalb der Systemgrenzen modelliert ist, sind die dargestellten Mengen die abgelagerten Abfälle. Abfälle entstehen zum Teil durch die Herstellung der Vorprodukte. Die ausgewiesenen Abfälle entstehen während des kompletten Lebenszyklus.

Seite 10

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

Ergebnisse pro m ² PYROBEL und PYROBELite (Teil 1)																
Umweltwirkungen	Einheit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Treibhauspotenzial (GWP)	kg CO₂-Äqv.	7,16E+01	1,49E+00	4,08E-02	0,00	7,83E-02	-	-	-	-	-	-	7,25E-02	0,00	6,45E-01	-
Abbaupotenzial der stratosphärischen Ozonschicht (ODP)	kg R11-Äqv.	5,33E-07	6,05E-12	4,85E-12	0,00	2,37E-12	-	-	-	-	-	-	3,47E-13	0,00	8,75E-12	-
Versauerungspotenzial von Boden und Wasser (AP)	kg SO₂-Äqv.	4,55E-01	6,75E-03	8,75E-06	0,00	1,00E-04	-	-	-	-	-	-	4,57E-04	0,00	4,10E-03	-
Eutrophierungspotenzial (EP)	kg PO4 ³⁻ -Äqv.	5,76E-02	1,71E-03	4,04E-06	0,00	1,14E-04	-	-	-	-	-	-	1,09E-04	0,00	5,60E-04	-
Potenzial für die Bildung von troposphärischem Ozon (POCP)	kg C₂H₄-Äqv.	2,98E-02	0,00	9,10E-06	0,00	6,24E-06	-	-	-	-	-	-	0,00	0,00	3,84E-04	-
Potenzial für die Verknappung von abiotischen Ressourcen - nicht fossile Ressourcen (ADP - Stoffe)	kg Sb-Äqv.	1,97E-04	5,80E-08	3,31E-10	0,00	2,99E-08	-	-	-	-	-	-	2,73E-09	0,00	2,42E-07	-
Potenzial für die Verknappung von abiotischen Ressourcen - fossile Brennstoffe (ADP - fossile Energieträger)	MJ	1,00E+03	2,04E+01	2,37E-02	0,00	1,43E-01	-	-	-	-	-	-	1,00E+00	0,00	8,45E+00	-
Ressourceneinsatz	Einheit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Einsatz erneuerbarer Primärenergie – ohne die erneuerbaren Primärenergieträger, die als Rohstoffe verwendet werden	MJ	5,63E+01	0,00	1,16E+01	0,00	1,68E-02	-	-	-	-	-	-	3,94E-02	0,00	7,30E-01	-
Einsatz der als Rohstoff verwendeten, erneuerbaren Primärenergieträger (stoffliche Nutzung)	MJ	1,16E+01	0,00	-1,16E+01	0,00	0,00	-	-	-	-	-	-	0,00	0,00	0,00	-
Gesamteinsatz erneuerbarer Primärenergie (Primärenergie und die als Rohstoff verwendeten erneuerbaren Primärenergieträger) (energetische + stoffliche Nutzung)	MJ	6,79E+01	0,00	1,22E-03	0,00	1,68E-02	-	-	-	-	-	-	3,94E-02	0,00	7,30E-01	-
Einsatz nicht erneuerbarer Primärenergie ohne die als Rohstoff verwendeten nicht erneuerbaren Pri- märenergieträger	MJ	2,12E+03	2,04E+01	1,29E+00	0,00	1,72E-01	-	-	-	-	-	-	1,01E+00	0,00	4,54E+01	-
Einsatz der als Rohstoff verwendeten nicht erneuer- baren Primärenergieträger (stoffliche Nutzung)	MJ	3,78E+01	0,00E+00	-1,27E+00	0,00	0,00	-	-	-	-	-	-	0,00	0,00	-3,65E+01	-
Gesamteinsatz nicht erneuerbarer Primärenergie (Primärenergie und die als Rohstoff verwendeten nicht erneuerbaren Primärenergieträger) (energeti- sche + stoffliche Nutzung)	MJ	2,16E+03	2,04E+01	2,48E-02	0,00	1,72E-01	-	-	-	-	-	-	1,01E+00	0,00	8,85E+00	-
Einsatz von Sekundärstoffen	kg	0.00	0.00	0.00	0.00	0.00	_	_	_	_	_	_	0.00	0.00	0.00	_

Seite 11

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

Ergebnisse pro m ² PYROBEL und PYROBELite (Teil 2)																
Ressourceneinsatz	Einheit	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
Einsatz von erneuerbaren Sekundärbrennstoffen	MJ	0,00	0,00	0,00	0,00	0,00	-	-	-	-	-	-	0,00	0,00	0,00	-
Einsatz von nicht erneuerbaren Sekundärbrennstof- fen	MJ	0,00	0,00	0,00	0,00	0,00	-	-	-	-	-	-	0,00	0,00	0,00	-
Nettoeinsatz von Süßwasserressourcen	m ³	4,01E-01	4,08E-03	9,15E-06	0,00	5,69E-03	-	-	-	-	-	-	9,75E-05	0,00	1,62E-03	-
Abfallkategorien	Einheit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Deponierter gefährlicher Abfall	kg	8,40E-04	9,70E-06	4,47E-09	0,00	6,03E-08	-	-	-	-	-	-	4,73E-07	0,00	2,78E-06	-
Deponierter nicht gefährlicher Abfall (Siedlungsabfall)	kg	4,30E-01	2,91E-03	1,34E-02	0,00	2,56E-02	-	-	-	-	-	-	1,42E-04	0,00	4,76E+01	-
Radioaktiver Abfall	kg	2,85E-02	2,79E-05	4,53E-07	0,00	1,13E-05	-	-	-	-	-	-	1,36E-06	0,00	1,34E-04	-
Output-Stoffflüsse	Einheit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Komponenten für die Weiterverwendung	kg	3,51E-01	0,00	0,00	0,00	0,00	-	-	-	-	-	-	0,00	0,00	0,00	-
Stoffe zum Recycling	kg	0,00	0,00	0,00	0,00	0,00	-	-	-	-	-	-	0,00	0,00	0,00	-
Stoffe für die Energierückgewinnung	kg	0,00	0,00	0,00	0,00	0,00	-	-	-	-	-	-	0,00	0,00	0,00	-
Exportierte Energie (Strom)	MJ	0,00	0,00	0,00	0,00	0,00	-	-	-	-	-	-	0,00	0,00	0,00	-
Exportierte Energie (thermische Energie)	MJ	0,00	0,00	0,00	0,00	0,00	-	-	-	-	-	-	0,00	0,00	0,00	-

Deklarationsnummer: EPD-APG-21.0

Veröffentlichungsdatum: 09.12.2015

Seite 12

Produktgruppe: Glas

6.4 Auswertung, Darstellung der Bilanzen und kritische Prüfung

Auswertung

Die Erklärung bezieht sich auf die deklarierte Einheit von 1 m² Brandschutzglas, zusammengesetzt aus Sicherheitsgläsern mit dazwischenliegender Brandschutzschicht. Betrachtet wurde eine Referenzkonstruktion mit einer Verglasungseinheit von 21,1 mm Verglasungen (Basisszenario), weitere sind Clusteranalysen enthalten.

Der Herstellungsprozess von Flachglas, die Roh- und Hilfsstoffe sowie die vorgelagerten Prozesse für Energieerzeugung stellen den Hauptanteil der quantifizierten Umweltauswirkungen dar.

Die Herstellung von Glas ist ein sehr energieintensiver Prozess, daraus ergeben sich hohe Auswirkungen bei den Indikatoren Treibhauspotential und Einsatz von Primärenergie. Durch die Betrachtung "External grade"-Verglasungen von Sicherheitsglas im Außeneinsatz wurde der thermische Prozess (Kalandrieren) mittels Clusteranaylse mit einbezogen. Der GWP erhöht sich durch den Einsatz von Primärenergie. Die Aushärtung der intumeszierenden Schicht erhöht den GWP zusätzlich, auch hier ergibt sich der Hauptanteil durch den Einsatz von Primärenergie.

Die aus der Ökobilanz errechneten Werte können für die Gebäudezertifizierung verwendet werden.

Bericht

Der dieser EPD zugrunde liegende Ökobilanzbericht wurde gemäß den Anforderungen der DIN EN ISO 14040 und DIN EN ISO 14044, sowie der EN 15804 und EN ISO 14025 durchgeführt und richtet sich nicht an Dritte, da er vertrauliche Daten enthält. Er ist beim ift Rosenheim hinterlegt. Ergebnisse und Schlussfolgerungen werden der Zielgruppe darin vollständig, korrekt, unvoreingenommen und verständlich mitgeteilt. Die Ergebnisse der Studie sind nicht für die Verwendung in zur Veröffentlichung vorgesehenen vergleichenden Aussagen bestimmt.

Kritische Prüfung

Die kritische Prüfung der Ökobilanz erfolgte durch den unabhängigen ift Prüfer Frank Stöhr, Dipl. Ing. (FH). Zusätzlich wurde der Bericht im Rahmen der EPD-Prüfung durch den externen Prüfer Patrick Wortner, MBA and Eng., Dipl.-Ing. (FH) überprüft

7 Allgemeine Informationen zur EPD

Vergleichbarkeit

Diese EPD wurde nach EN 15804 erstellt und ist daher nur mit anderen EPDs, die den Anforderungen der EN 15804 entsprechen, vergleichbar.

Grundlegend für einen Vergleich sind der Bezug zum Gebäudekontext und dass die gleichen Randbedingungen in den Lebenszyklusphasen betrachtet werden.

Für einen Vergleich von EPDs für Bauprodukte gelten die Regeln in Kapitel 5.3 der EN 15804.

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

Kommunikation

Das Kommunikationsformat dieser EPD genügt den Anforderungen der EN 15942:2011 und dient damit auch als Grundlage zur B2B Kommunikation; allerdings wurde die Nomenklatur entsprechend der EN 15804 gewählt.

Verifizierung

Die Überprüfung der Umweltproduktdeklaration ist entsprechend der ift Richtlinie zur Erstellung von Typ III Umweltproduktdeklarationen in Übereinstimmung mit den Anforderungen von EN ISO 14025 dokumentiert.

Diese Deklaration beruht auf dem ift-PCR-Dokument "Flachglas im Bauwesen" – PCR-FG-1.1:2013.

Die Europäische Norm EN 15804 dient als Kern-PCR a)

Unabhängige Verifizierung der Deklaration und Angaben nach
EN ISO 14025:2010
□ intern ☒ extern

Unabhängige, dritte(r) Prüfer(in): b)
Patrick Wortner

a) Produktkategorieregeln
b) Freiwillig für den Informationsaustausch innerhalb der
Wirtschaft, verpflichtend für den Informationsaustausch
zwischen Wirtschaft und Verbrauchern (siehe EN ISO
14025:2010, 9.4).

Überarbeitungen des Dokumentes

Nr.	Datum	Kommentar	Bearbeiter	Prüfer
1	26.10.2015	Ersterstellung und interne Prüfung	Stich	Stöhr
2	09.12.2015	Externe Prüfung	Stich	Wortner
3	07.08.2019	Revision	Zwick	Wortner

Deklarationsnummer: EPD-APG-21.0

Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

Literaturverzeichnis

 Ökologische Bilanzierung von Baustoffen und Gebäuden – Wege zu einer ganzheitlichen Bilanzierung.
 Hrsg.: Eyerer, P.; Reinhardt, H.-W.
 Birkhäuser Verlag, Basel, 2000

[2] Leitfaden Nachhaltiges Bauen. Hrsg.: Bundesministerium für Verkehr, Bau- und Wohnungswesen Berlin, 2013

[3] GaBi 6: Software und Datenbank zur Ganzheitlichen Bilanzierung. Hrsg.: IKP Universität Stuttgart und PE Europe GmbH Leinfelden-Echterdingen, 1992 – 2014

[4] "Ökobilanzen (LCA)". Klöpffer, W.; Grahl, B. Wiley-VCH-Verlag, Weinheim, 2009

[5] EN 15804:2012+A1:2013
 Nachhaltigkeit von Bauwerken –
 Umweltdeklarationen für Produkte – Regeln für Produktkategorien.
 Beuth Verlag GmbH, Berlin

[6] EN 15942:2011 Nachhaltigkeit von Bauwerken – Umweltproduktdeklarationen – Kommunikationsformate zwischen Unternehmen Beuth Verlag GmbH, Berlin

ISO 21930:2007-10
 Hochbau – Nachhaltiges Bauen –
 Umweltproduktdeklarationen von Bauprodukten
 Beuth Verlag GmbH, Berlin

[8] EN ISO 14025:2011-10 Umweltkennzeichnungen und -deklarationen Typ III Umweltdeklarationen – Grundsätze und Verfahren. Beuth Verlag GmbH, Berlin

[9] EN ISO 16000-9:2006-08 Innenraumluftverunreinigungen – Teil 9: Bestimmung der Emissionen von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen – Emissionsprüfkammer-Verfahren. Beuth Verlag GmbH, Berlin

[10] EN ISO 16000-11:2006-06 Innenraumluftverunreinigungen – Teil 11: Bestimmung der Emissionen von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen – Probenahme, Lagerung der Proben und Vorbereitung der Prüfstücke. Beuth Verlag GmbH, Berlin

[11] DIN ISO 16000-6:2004-12 Innenraumluftverunreinigungen – Teil 6: Bestimmung von VOC in der Innenraumluft und in Prüfkammern, Probenahme auf TENAX TA®, thermische Desorption und Gaschromatografie mit MS/FID.
Beuth Verlag GmbH, Berlin

[12] DIN EN ISO 14040:2009-11 Umweltmanagement – Ökobilanz – Grundsätze und Rahmenbedingungen. Beuth Verlag GmbH, Berlin

[13] DIN EN ISO 14044:2006-10 Umweltmanagement – Ökobilanz – Anforderungen und Anleitungen. Beuth Verlag GmbH, Berlin

[14] EN 14351
 Fenster und Türen – Produktnorm,
 Leistungseigenschaften
 Beuth Verlag GmbH, Berlin

[15] EN 16034 Fenster, Türen und Tore – Produktnorm, Leistungseigenschaften – Feuer- und/oder Rauchschutzeigenschaften. Beuth Verlag GmbH, Berlin

[16] DIN EN 12457-1:2003-01
Charakterisierung von Abfällen – Auslaugung;
Übereinstimmungsuntersuchung für die
Auslaugung von körnigen Abfällen und
Schlämmen – Teil 1: Einstufiges
Schüttelverfahren mit einem Flüssigkeits/Feststoffverhältnis von 2 l/kg und einer
Korngröße unter 4 mm (ohne oder mit
Korngrößenreduzierung).
Beuth Verlag GmbH, Berlin

[17] DIN EN 12457-2:2003-01
Charakterisierung von Abfällen – Auslaugung;
Übereinstimungsuntersuchung für die Auslaugung
von körnigen Abfällen und Schlämmen – Teil 2:
Einstufiges Schüttelverfahren mit einem
Flüssigkeits-/Feststoffverhältnis von 10 l/kg und
einer Korngröße unter 4 mm (ohne oder mit
Korngrößenreduzierung).
Beuth Verlag GmbH, Berlin

[18] DIN EN 12457-3:2003-01
Charakterisierung von Abfällen – Auslaugung;
Übereinstimmungsuntersuchung für die
Auslaugung von körnigen Abfällen und
Schlämmen – Teil 3: Zweistufiges
Schüttelverfahren mit einem
Flüssigkeits/Feststoffverhältnis von 2 l/kg und
8 l/kg für Materialien mit hohem Feststoffgehalt
und einer Korngröße unter 4 mm (ohne oder mit
Korngrößenreduzierung).
Beuth Verlag GmbH, Berlin

[19] DIN EN 12457-4:2003-01 Charakterisierung von Abfällen – Auslaugung; Übereinstimmungsuntersuchung für die

Deklarationsnummer: EPD-APG-21.0

Veröffentlichungsdatum: 09.12.2015

ift ROSENHEIM

Produktgruppe: Glas

Auslaugung von körnigen Abfällen und Schlämmen – Teil 4: Einstufiges Schüttelverfahren mit einem Flüssigkeits-/Feststoffverhältnis von 10 l/kg für Materialien mit einer Korngröße unter 10 mm (ohne oder mit Korngrößenreduzierung).
Beuth Verlag GmbH, Berlin

- [20] DIN EN 13501-1:2010-01 Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten – Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten. Beuth Verlag GmbH, Berlin
- [21] DIN 4102-1:1998-05
 Brandverhalten von Baustoffen und Bauteilen –
 Teil 1: Baustoffe; Begriffe, Anforderungen und Prüfungen.
 Beuth Verlag GmbH, Berlin
- [22] OENORM S 5200:2009-04-01 Radioaktivität in Baumaterialien. Beuth Verlag GmbH, Berlin
- [23] DIN/CEN TS 14405:2004-09 Charakterisierung von Abfällen – Auslaugungsverhalten – Perkolationsprüfung im Aufwärtsstrom (unter festgelegten Bedingungen). Beuth Verlag GmbH, Berlin
- [24] VDI 2243:2002-07 Recyclingorientierte Produktentwicklung. Beuth Verlag GmbH, Berlin
- [25] Richtlinie 2009/2/EG der Kommission zur 31. Anpassung der Richtlinie 67/548/EWG des Rates zur Angleichung der Rechts- und Verwaltungsvorschriften für die Einstufung, Verpackung und Kennzeichnung gefährlicher Stoffe an den technischen Fortschritt (15. Januar 2009)
- [26] ift-Richtlinie NA-01/3 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. ift Rosenheim, April 2015
- [27] Arbeitsschutzgesetz ArbSchG Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit, 5. Februar 2009 (BGBI. I S. 160, 270)
- [28] Bundesimmissionsschutzgesetz BImSchG Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen, 26. September 2002 (BGBI. I S. 3830)

[29] Chemikaliengesetz – ChemG Gesetz zum Schutz vor gefährlichen Stoffen Unterteilt sich in Chemikaliengesetzt und eine Reihe von Verordnungen; hier relevant: Gesetz zum Schutz vor gefährlichen Stoffen, 2. Juli 2008 (BGBI. I S.1146)

Seite 15

- [30] Chemikalien-Verbotsverordnung ChemVerbotsV Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach dem Chemikaliengesetz, 21. Juli 2008 (BGBI. I S. 1328)
- [31] Gefahrstoffverordnung GefStoffV Verordnung zum Schutz vor Gefahrstoffen, 23. Dezember 2004 (BGBI. I S. 3758)
- [32] "PCR Flachglas im Bauwesen. Product Category Rules nach ISO 14025 und EN 15804". ift Rosenheim, Januar 2013
- [33] Forschungsvorhaben "EPDs für transparente Bauelemente".
 ift Rosenheim. 2011

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

ift ROSENHEIM

8 Anhang A: Overview results for the different fire resistant glasses products.

	A1-A3		A1-A3												
AGC Brandname	Pyrobel 16 EG	Pyrobelite 7	Pyrobelite 12	Pyrobel 16	Pyrobel 25	Pyrobel 35	Pyrobelite 7EG	Pyrobel 8EG	Pyrobel 25 EG	Pyrobel 35 EG	Pyrobel 16 EG2	Pyrobelite 16 EG2	Pyrobel 35 EG2		
Promat	Promaglas 30 type 2	Promaglas G30 type 1	Promaglas 15 type 1	Promaglas 30 type 1	Promaglas 60/25 type 1	Promaglas 90 type 1	Promaglas G30 type 2	Promaglas 15 type 2	Promaglas 60/25 type 2	Promaglas 90 type 2	SYS- TEMGLAS 30 type 20 (:3)	Promaglas 30 type 20 (:8)	Promaglas 90 type 20	SYS- TEMGLAS 90/43 type 1	SYS- TEMGLAS 90/43 type 10
Global warming potential (100 years)	7,16E+01	2,81E+01	4,00E+01	5,54E+01	8,02E+01	1,04E+02	4,38E+01	4,70E+01	9,64E+01	1,20E+02	8,78E+01	1,19E+02	1,36E+02	1,37E+02	1,69E+02
Ozone depletion potential – strato- spheric ozone layer	5,33E-07	3,03E-07	5,20E-07	5,27E-07	1,04E-06	1,86E-06	2,70E-07	5,20E-07	1,04E-06	1,86E-06	5,39E-07	5,54E-07	1,87E-06	1,56E-06	1,57E-06
Acidification poten- tial	4,55E-01	1,81E-01	2,61E-01	3,74E-01	5,39E-01	6,44E-01	2,60E-01	2,74E-01	6,20E-01	7,25E-01	5,36E-01	7,63E-01	8,06E-01	8,97E-01	1,06E+00
Eutrophication potential	5,76E-02	2,23E-02	3,23E-02	4,71E-02	6,76E-02	7,96E-02	3,26E-02	3,39E-02	7,81E-02	9,01E-02	6,81E-02	9,76E-02	1,01E-01	1,13E-01	1,34E-01
Photochemical ozone creation potential	2,98E-02	1,20E-02	1,73E-02	2,40E-02	3,52E-02	4,50E-02	1,76E-02	1,92E-02	4,10E-02	5,08E-02	3,57E-02	4,89E-02	5,67E-02	5,88E-02	7,05E-02
Abiotic depletion potential for non-fossil resources	1,97E-04	7,93E-05	1,22E-04	1,68E-04	2,57E-04	3,34E-04	1,06E-04	1,23E-04	2,87E-04	3,64E-04	2,26E-04	3,18E-04	3,93E-04	4,22E-04	4,81E-04
Abiotic depletion potential for fossil resources	1,00E+03	4,31E+02	5,96E+02	7,84E+02	1,13E+03	1,52E+03	6,38E+02	7,01E+02	1,35E+03	1,74E+03	1,22E+03	1,59E+03	1,95E+03	1,89E+03	2,32E+03
Primary energy resources, total renewable	6,79E+01	3,94E+01	4,67E+01	5,61E+01	7,13E+01	8,75E+01	5,09E+01	5,28E+01	8,31E+01	9,93E+01	7,97E+01	9,85E+01	1,11E+02	1,08E+02	1,31E+02
Primary energy resources, total non-renewable	2,16E+03	1,10E+03	1,73E+03	1,93E+03	3,37E+03	5,53E+03	1,24E+03	1,84E+03	3,60E+03	5,77E+03	2,40E+03	2,79E+03	6,00E+03	5,25E+03	5,71E+03
Fresh water use	4,01E-01	2,15E-01	3,21E-01	3,49E-01	5,92E-01	9,81E-01	2,51E-01	3,56E-01	6,44E-01	1,03E+00	4,53E-01	5,10E-01	1,08E+00	9,15E-01	1,02E+00
Hazardous waste disposed	8,40E-04	3,91E-04	5,64E-04	8,40E-04	1,19E-03	1,35E-03	5,78E-04	5,87E-04	1,38E-03	1,54E-03	1,22E-03	1,77E-03	1,73E-03	2,00E-03	2,38E-03
Non-hazardous waste disposed	4,30E-01	1,78E-01	2,72E-01	4,30E-01	6,17E-01	6,80E-01	2,76E-01	2,75E-01	7,14E-01	7,77E-01	6,25E-01	9,40E-01	8,75E-01	1,06E+00	1,25E+00
Radioactive waste disposed	2,85E-02	2,04E-02	2,39E-02	2,85E-02	3,57E-02	4,42E-02	2,68E-02	2,77E-02	4,22E-02	5,07E-02	4,15E-02	5,07E-02	5,72E-02	5,41E-02	6,71E-02

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

9 Anhang B

Beschreibung der Lebenszyklusszenarien für PYROBEL und PYROBELite

	stellun phase		Erri tun pha	gs-	S- Nutzungsphase Entsorgungsphase								se	Vorteile und Belastungen außerhalb der System- grenzen			
A 1	A2	А3	A4	A 5		B1	B2	ВЗ	В4	В5	В6	В7	C1	C2	C3	C4	D
Rohstoffbereitstellung	Transport	Herstellung	Transport	Bau/Einbau		Nutzung	Inspektion, Wartung, Reinigung	Reparatur	Austausch / Ersatz	Verbesserung / Modernisierung	betrieblicher Energieeinsatz	betrieblicher Wassereinsatz	Abbruch	Transport	Abfallbewirtschaftung	Deponierung	Wiederverwendungs- Rückgewinnungs- Recyclingpotenzial
✓	✓	✓	✓	✓		✓	✓	_	_	_	_	_	_	✓	✓	✓	_

Die Berechnung der Szenarien wurde unter Berücksichtigung einer Bauteil-Nutzungsdauer von 30 Jahren (gemäß RSL unter 4 Nutzungsstadium) vorgenommen.

Für die Szenarien wurden Herstellerangaben verwendet, außerdem wurde als Grundlage der Szenarien das Forschungsvorhaben "EPDs für transparente Bauelemente" herangezogen [35].

Hinweis: Die jeweilig gewählten und üblichen Szenarien sind fett markiert. Diese wurden zur Berechnung der Indikatoren in der in der Gesamttabelle herangezogen.

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

A4 Tran	A4 Transport zur Baustelle								
Nr.	Nutzungsszenario	Beschreibung							
A4	Direktanlieferung auf Baustelle / Niederlassung	25 t LKW Euro 4, 60 Prozent ausgelastet, ca. 400 km auf Baustelle							

A5 Bau / Einbau

Nr.	Nutzungsszenario	Beschreibung
A5	Bau / Einbau	Verpackung von PYROBEL und PYROBELite

Bei abweichenden Aufwendungen während des Einbau bzw. der Installation der Produkte als Bestandteil der Baustellenabwicklung werden diese auf Gebäudeebene erfasst.

Beim gewählten Szenario entstehen Umweltwirkungen aus der Vewendung von Verpackungen.

Gutschriften aus A5 werden nicht in A5 ausgewiesen.

Abfall wird entsprechend behandelt. Es wir davon ausgegangen, dass das Verpackungsmaterial im Modul Einbau der Abfallbehandlung zugeführt wird. Der Abfall wird teilweise verwertet: Holz auf Deponie; unsortierte Kunststoffe thermisch verwertet.

Für die Abfallbehandlungsstellen wird von einem Mittelwert für Transport von 30 km, mit Standard GaBi Auslastung (85 %) ausgegangen.

B1 Nutzung

Siehe Kapitel 5 Nutzungsstadium - Emissionen an die Umwelt. Emissionen können nicht quantifiziert werden.

B2 Inspektion, Wartung, Reinigung

Nr.	Nutzungsszenario	Beschreibung
B2	selten manuell	Für Inspektion, Wartung, Reinigung wurden durchschnittlich 0,5 Liter Frischwasser und Abwasser angenommen (Bezogen auf Nutzungsdauer: 15 Liter in 30 Jahren)

Hilfsstoffe, Betriebsstoffe, der Energieeinsatz und Abfallstoffe sowie Transportwege während der Reinigung können vernachlässigt werden.

Deklarationsnummer: EPD-APG-21.0 Veröffentlichungsdatum: 09.12.2015

Produktgruppe: Glas

C2 Tran	C2 Transport										
Nr.	Nutzungsszenario	Beschreibung									
C2	Transport	Transport zur Sammelstelle mit 22 t LKW, 85 % ausgelastet 30 km									
C3 Abfa	Ilbewirtschaftung										
Nr.	Nutzungsszenario	Beschreibung									
С3	Brandschutzglas	100 % auf Deponie									
C4 Dep	onierung										
Nr.	Nutzungsszenario	Beschreibung									
C4	Deponierung	100 % auf Deponie									

Impressum

Ökobilanzierer

AGC Glass Europe Avenue Jean Monnet 4 BE 1348 Louvain-la-Neuve

Programmbetreiber

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim Telefon: 0 80 31/261-0

Telefax: 0 80 31/261 290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de

Deklarationsinhaber

AGC Glass Europe Avenue Jean Monnet 4 BE 1348 Louvain-la-Neuvet

Hinweise

Grundlage dieser EPD sind in der Hauptsache Arbeiten und Erkenntnisse des Instituts für Fenstertechnik e.V., Rosenheim (ift Rosenheim) sowie im Speziellen die ift-Richtlinie NA-01/3 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Layout

ift Rosenheim GmbH - 2015

Fotos (Titelseite)

AGC Glass Europe

© ift Rosenheim, 2015

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim

Telefon: +49 (0) 80 31/261-0 Telefax: +49 (0) 80 31/261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de